

Closed Orbit and Linear Optics Correction in the Ring

Stuart Henderson

December 4, 2001

Ring Closed Orbit Correction

 Form a Merit Function consisting of sum of squares of orbit deviations at all BPMs

$$f = (x_1^{\text{meas}} - x_1^{\text{model}})^2 + \dots + (x_{44}^{\text{meas}} - x_{44}^{\text{model}})^2$$

Where

$$x_i^{\text{model}} = \sum_{i}^{Correctors} R_{ij} \boldsymbol{q}_j$$

$$R_{ij}$$
 = response matrix

$$q_{\rm j}$$
 = corrector kicks

• A gradient-minimization algorithm (Numerical Recipes FRPRMN) adjusts the corrector strengths θ_j to minimize the merit function.

Closed Orbit Correction Example 100 micron random quad position errors

Linear Optics Correction

- Use the same general method as for closed-orbit correction
- Requires betatron-phase measurements at all BPMs
- Form a merit function consisting of sum-of-squares of betatron phase errors at all BPMs:

$$f = (\mathbf{f}_{1}^{\text{H,meas}} - \mathbf{f}_{1}^{\text{H,model}})^{2} + (\mathbf{f}_{1}^{\text{V,meas}} - \mathbf{f}_{1}^{\text{V,model}})^{2} + \dots + (\mathbf{f}_{44}^{\text{H,meas}} - \mathbf{f}_{44}^{\text{H,model}})^{2} + (\mathbf{f}_{44}^{\text{V,meas}} - \mathbf{f}_{44}^{\text{V,model}})^{2}$$

- The model phase is calculated from an optics model of the ring.
- The minimization routine adjusts the quadrupole supplies in order to minimize the merit function.
- Example 1% random main quadrupole supply current errors (or equivalently, 1% systematic magnetic length errors)

Horizontal Betatron Phase Error (degrees) $Df = f_{meas} - f_{design} vs. BPM Number$

Horizontal Db/b vs. BPM Number

Vertical Betatron Phase Error (degrees) $Df = f_{meas} - f_{design}$ vs. BPM Number

Vertical Db/b vs. BPM Number

To-do:

- These algorithms work
- Real error study is next on the list
 - Realistic alignment error sets
 - Realistic quadrupole strength error sets
 - BPM measurement errors
 - Understand (quantitatively) phase-measurement capabilities of BPM system
- Incorporate other correction algorithms and compare
 - 3-bump, harmonic correction (orbit)
 - Response-matrix measurement (linear optics)